Monday 26 August 2013

05:24
          How do we get electricity from water? Actually, hydroelectric and coal-fired power plants produce electricity in a similar way. In both cases a power source is used to turn a propeller-like piece called a turbine, which then turns a metal shaft in an electric generator, which is the motor that produces electricity. A coal-fired power plant uses steam to turn the turbine blades; whereas a hydroelectric plant uses falling water to turn the turbine. The results are the same.

Take a look at this diagram of a hydroelectric power plant to see the details:


          The theory is to build a dam on a large river that has a large drop in elevation (there are not many hydroelectric plants in Kansas or Florida). The dam stores lots of water behind it in the reservoir. Near the bottom of the dam wall there is the water intake. Gravity causes it to fall through the penstock inside the dam. At the end of the penstock there is a turbine propeller, which is turned by the moving water. The shaft from the turbine goes up into the generator, which produces the power. Power lines are connected to the generator that carry electricity to your home and mine. The water continues past the propeller through the tailrace into the river past the dam. By the way, it is not a good idea to be playing in the water right below a dam when water is released!


As to how this generator works Engineers explains it this way:

        "A hydraulic turbine converts the energy of flowing water into mechanical energy. A hydroelectric generator converts this mechanical energy into electricity. The operation of a generator is based on the principles discovered by Faraday. He found that when a magnet is moved past a conductor, it causes electricity to flow. In a large generator, electromagnets are made by circulating direct current through loops of wire wound around stacks of magnetic steel laminations. These are called field poles, and are mounted on the perimeter of the rotor. The rotor is attached to the turbine shaft, and rotates at a fixed speed. When the rotor turns, it causes the field poles (the electromagnets) to move past the conductors mounted in the stator. This, in turn, causes electricity to flow and a voltage to develop at the generator output terminals."


Pumped storage: Reusing water for peak electricity demand




          Demand for electricity is not "flat" and constant. Demand goes up and down during the day, and overnight there is less need for electricity in homes, businesses, and other facilities. For example, here in Atlanta, Georgia at 5:00 PM on a hot August weekend day, you can bet there is a huge demand for electricity to run millions of air conditioners! But, 12 hours later at 5:00 AM .... not so much. Hydroelectric plants are more efficient at providing for peak power demands during short periods than are fossil-fuel and nuclear power plants, and one way of doing that is by using "pumped storage", which reuses the same water more than once.
          Pumped storage is a method of keeping water in reserve for peak period power demands by pumping water that has already flowed through the turbines back up a storage pool above the powerplant at a time when customer demand for energy is low, such as during the middle of the night. The water is then allowed to flow back through the turbine-generators at times when demand is high and a heavy load is placed on the system.
           The reservoir acts much like a battery, storing power in the form of water when demands are low and producing maximum power during daily and seasonal peak periods. An advantage of pumped storage is that hydroelectric generating units are able to start up quickly and make rapid adjustments in output. They operate efficiently when used for one hour or several hours. Because pumped storage reservoirs are relatively small, construction costs are generally low compared with conventional hydropower facilities.

Advantages Of Hydroelectric Power :

1. Hydroelectricity is a renewable energy source.

  Hydroelectricity uses the energy of running water, without reducing its quantity, to produce electricity. Therefore, all hydroelectric developments, of small or large size, whether run of the river or of accumulated storage, fit the concept of renewable energy.

2. Hydroelectricity makes it feasible to utilize other renewable sources.

  Hydroelectric power plants with accumulation reservoirs offer incomparable operational flexibility, since they can immediately respond to fluctuations in the demand for electricity. The flexibility and storage capacity of hydroelectric power plants make them more efficient and economical in supporting the use of intermittent sources of renewable energy, such as solar energy or Aeolian energy.

3. Hydroelectricity promotes guaranteed energy and price stability.

  River water is a domestic resource which, contrary to fuel or natural gas, is not subject to market fluctuations. In addition to this, it is the only large renewable source of electricity and its cost-benefit ratio, efficiency, flexibility and reliability assist in optimizing the use of thermal power plants.

4. Hydroelectricity contributes to the storage of drinking water.

  Hydroelectric power plant reservoirs collect rainwater, which can then be used for consumption or for irrigation. In storing water, they protect the water tables against depletion and reduce our vulnerability to floods and droughts.

5. Hydroelectricity increases the stability and reliability of electricity systems.

  The operation of electricity systems depends on rapid and flexible generation sources to meet peak demands, maintain the system voltage levels, and quickly re-establish supply after a blackout. Energy generated by hydroelectric installations can be injected into the electricity system faster than that of any other energy source. The capacity of hydroelectric systems to reach maximum production from zero in a rapid and foreseeable manner makes them exceptionally appropriate for addressing alterations in the consumption and providing ancillary services to the electricity system, thus maintaining the balance between the electricity supply and demand.

6. Hydroelectricity helps fight climate changes.

  The hydroelectric life cycle produces very small amounts of greenhouse gases (GHG). In emitting less GHG than power plants driven by gas, coal or oil, hydroelectricity can help retard global warming. Although only 33% of the available hydroelectric potential has been developed, today hydroelectricity prevents the emission of GHG corresponding to the burning of 4.4 million barrels of petroleum per day worldwide.

7. Hydroelectricity improves the air we breathe.

  Hydroelectric power plants don't release pollutants into the air. They very frequently substitute the generation from fossil fuels, thus reducing acid rain and smog. In addition to this, hydroelectric developments don't generate toxic by-products.

8. Hydroelectricity offers a significant contribution to development.

  Hydroelectric installations bring electricity, highways, industry and commerce to communities, thus developing the economy, expanding access to health and education, and improving the quality of life. Hydroelectricity is a technology that has been known and proven for more than a century. Its impacts are well understood and manageable through measures for mitigating and compensating the damages. It offers a vast potential and is available where development is most necessary.

9. Hydroelectricity means clean and cheap energy for today and for tomorrow.

  With an average lifetime of 50 to 100 years, hydroelectric developments are long-term investments that can benefit various generations. They can be easily upgraded to incorporate more recent technologies and have very low operating and maintenance costs.

10. Hydroelectricity is a fundamental instrument for sustainable development.

  Hydroelectric enterprises that are developed and operated in a manner that is economically viable, environmentally sensible and socially responsible represent the best concept of sustainable development. That means, "development that today addresses people's needs without compromising the capacity of future generations for addressing their own needs" (World Commission on the Environment and Development, 1987).

0 comments:

Post a Comment